

Layman's Guide to TxBF, MIMO and MU-MIMO

GT Hill Chief Big Dog Ruckus Wireless gt@ruckuswireless.com @gthill

Transmit Beamforming

- Poor adoption with 802.11n
- 802.11ac focuses on one implementation
 - Universal industry focus
 - NDP Sounding with explicit immediate compressed feedback

Signals Out of Phase

Signals in Phase

+3dB

2

Transmit Beamforming

3 / 4.7 / 6 dB gain vs. additional spatial stream • Each antenna can either reinforce the signal (TxBF) or add more data (spatial multiplexing) but never both at the same time.

 Each additional spatial stream adds significantly more speed
 3dB adds <10% more speed
 Requires client feedback
 Does not work with 11a/b/g/n and only *some* 11ac clients

Can you hit this target?

2 Bits

How about one of these?

Bits

4

S

 \mathbf{O}

000000000

 \mathbf{m}

 \mathbf{O}

 \bigcirc \bigcirc \bigcirc \bigcirc 0 \bigcirc (0) (0)

256-QAM

SISO (Diversity)

Uses only ONE antenna for transmit and receive

MIMO – Spatial Multiplexing

Can use multiple antennas for transmit and receive

MIMO – Spatial Multiplexing

Artist Michael Murphy

Decorrelation

Increasing the difference in "perspective" between each stream
 Horizontal vs. vertical polarization
 Multipath

Multi-User MIMO (MU-MIMO)

Requires 11ac client(s) with TxBF feedback/support

•Creates new challenges related to signal steering and isolation

Multi-User MIMO

multiple clients at the same time

Challenges with MU-MIMO

Peak to Average Power Ratio
Transmit power equalization
Rate selection

MCSO	23 dBm
MCS1	23 dBm
MCS2	23 dBm
MCS3	23 dBm
MCS4	22 dBm
MCS5	20 dBm
MCS6	18 dBm
MCS7	17 dBm
MCS8	23 dBm
MCS9	23 dBm
MCS10	23 dBm
MCS11	23 dBm
MCS12	22 dBm
MCS13	20 dBm
MCS14	18 dBm
MCS15	17 dBm 🥂 RU

Challenges with MU-MIMO

Delayed Acknowledgment (block ack)
Data Queuing
Selecting MU groups
Making the process efficient
Same size frames
Same data rate clients

Questions

