Packet Capture and Analysis in the MU-MIMO 11ac World

Jay Botelho, Director of Product Management, Savvius Inc.
How We Work Today
USB WLAN Adapters Are Not Keeping Up

1,733Mbps vs. 866Mbps
The Real World

1,733Mbps vs. 866Mbps

What happened to my ping data?
Wi-Fi Is Everywhere Today

- WLANs are everywhere
 - Lots of AP’s
 - Lots of physical distance to cover

- WLAN troubleshooting **still** requires a point-of-presence
Portable analysis of enterprise WLANs is no longer feasible
Portable analysis of enterprise WLANs is feasible only under certain conditions
When Is Portable Wireless Packet Analysis Feasible?

1. It is convenient, or at least feasible, to be where the measurements need to be made
2. You are 100% sure of the environment
3. Only short-term measurement is required
4. The problem is repeatable, or frequent enough to capture quickly
5. Long-term packet retention is not required
6. Measurement from a single location is sufficient
7. You are only interested in a subset of the data, and this data can be captured within the limitations of portable analysis
USB Adapter Capabilities

- Product features:
 - USB device with extension cable
 - Dual band operation – 2.4GHz/5GHz
 - All standard international 802.11 channels (a/b/g/n)
 - Supports 802.11n - 3 transmit/receive streams (450Mbps)
 - 20MHz and 40MHz channel operation
 - Supports multi-channel aggregation and roaming
 - Driver included with Omnipeek
 - Tested and supported with OmniPeek and Capture Engine
 - Capture Only – no network services
 - $59 on Amazon

- Product features:
 - USB device with extension cable
 - Dual band operation – 2.4GHz/5GHz
 - All standard international 802.11 channels (a/b/g/n/ac)
 - Supports 802.11ac - 2 transmit/receive streams (867Mbps)
 - 20/40/80MHz channel operation
 - Supports multi-channel aggregation and roaming
 - Driver included with Omnipeek
 - Tested and supported with OmniPeek and Capture Engine
 - Capture Only – no network services
 - $149 on Amazon
When Portable Isn’t Enough
WLAN Analysis Without Leaving Your Desk

Using USB Adapters

Using APs

Remote Software Probe for 24x7 Operation
Omnipliance WiFi

- The first and only dedicated appliance for distributed, 24x7 wireless packet capture and analysis
- Supports multi-gigabit capture rates
- Supports both real-time and forensic analysis simultaneously
- 8TB of storage for recording hours/days of high-speed WLAN traffic
- Captures packets from existing, or dedicated, APs
- Analysis performed locally – no extra traffic on network
- Tested with industry-leading wireless equipment vendors
How Omnipliance WiFi Works

1. Using the WLAN controller UI, put the desired APs in “sniffer” mode, and direct the packets to Omnipliance WiFi – packets start flowing

2. Using Omnipeek, connect to Omnipliance WiFi and configure your Remote Adapter capture

3. Start the capture – analysis (and storage) of all packets from the APs begin immediately

http://www.youtube.com/embed/BcWWeufQn7Q
Example: Mission-Critical Financial Trading

• All users on Wi-Fi; BYOD
• 100’s of simultaneous users
• 100’s of trades per second
• Deliver, verify that each individual gets the same QOS to guarantee fair trading
• Single appliance solution
• 24x7 forensics data capture with additional real-time captures to handle spot problems
High Density/Small Physical Footprint Deployment

- Dense deployment – 28 APs per trading floor
- Sensor APs – 2 groups of 3
- Provides dedicated, 24x7 monitoring
Example 2: Highly Distributed, Multi-Campus

- All users with multiple devices on Wi-Fi; BYOD
- Wide mix of device capabilities
- 10’s of thousands of users; 1000’s simultaneously
- 10,000 APs
- High bandwidth apps, eg. video
Highly Distributed, Multi-Campus Deployment

- Dense deployment ~ 28 APs per building floor
- 100’s of building floors
- Reactive capture and analysis
24x7 WLAN Analysis Value Proposition

<table>
<thead>
<tr>
<th>Category</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce MTTR</td>
<td>• Begin analyzing issues immediately</td>
</tr>
<tr>
<td></td>
<td>• Aggregate data from multiple APs</td>
</tr>
<tr>
<td></td>
<td>• Wi-Fi forensics - No need to reproduce a problem</td>
</tr>
<tr>
<td>Gigabit Speed</td>
<td>• Analysis as fast as your 802.11ac Wi-Fi networks</td>
</tr>
<tr>
<td>Time-saving Analytics</td>
<td>• Complete 802.11 protocol analysis</td>
</tr>
<tr>
<td></td>
<td>• VoFi</td>
</tr>
<tr>
<td></td>
<td>• Roaming</td>
</tr>
<tr>
<td>24x7 Enterprise-wide Visibility</td>
<td>• APs represent the maximum capability of your WLAN vs. using USB WLAN adapters</td>
</tr>
<tr>
<td>Lower IT Costs & Resources</td>
<td>• Less resources required to manage and troubleshoot</td>
</tr>
<tr>
<td></td>
<td>• Save travel expenses</td>
</tr>
<tr>
<td></td>
<td>• Troubleshoot in real time without leaving your desk</td>
</tr>
</tbody>
</table>
And What About MU-MIMO?
MU-MIMO Setup

Figure 4-10. Multi-user channel sounding procedure

802.11ac: A Survival Guide;
Matthew Gast, O’Reilly Media, 2013
MU-MIMO Data Transmission

Figure 4-19. Acknowledgement in multi-user MIMO

802.11ac: A Survival Guide;
Matthew Gast, O’Reilly Media, 2013
What Can a Sniffer See?

<table>
<thead>
<tr>
<th>Data TX</th>
<th>Size</th>
<th>Protocol</th>
<th>Decode: Subtype</th>
<th>Delta Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>27</td>
<td>802.11 Control</td>
<td>%0101 VHT NDP Announcement</td>
<td>0.000542</td>
</tr>
<tr>
<td>29.3</td>
<td>1499</td>
<td>802.11 Management</td>
<td>%1110 Action No Ack</td>
<td>0.000008</td>
</tr>
<tr>
<td>6.0</td>
<td>21</td>
<td>802.11 Control</td>
<td>%0100 Beamforming Report Poll</td>
<td>0.000474</td>
</tr>
<tr>
<td>29.3</td>
<td>1499</td>
<td>802.11 Management</td>
<td>%0100 Beamforming Report Poll</td>
<td>0.000009</td>
</tr>
<tr>
<td>6.0</td>
<td>21</td>
<td>802.11 Control</td>
<td>%0100 Beamforming Report Poll</td>
<td>0.002026</td>
</tr>
<tr>
<td>24.0</td>
<td>32</td>
<td>802.11 BA</td>
<td>%1001 Block Acknowledgement (BlockAck)</td>
<td>0.001834</td>
</tr>
<tr>
<td>24.0</td>
<td>24</td>
<td>802.11 BAR</td>
<td>%1000 Block Acknowledgement Request (BlockAckReq)</td>
<td>0.000008</td>
</tr>
<tr>
<td>24.0</td>
<td>32</td>
<td>802.11 BA</td>
<td>%1001 Block Acknowledgement (BlockAck)</td>
<td>0.000005</td>
</tr>
<tr>
<td>24.0</td>
<td>24</td>
<td>802.11 BAR</td>
<td>%1000 Block Acknowledgement Request (BlockAckReq)</td>
<td>0.000004</td>
</tr>
<tr>
<td>24.0</td>
<td>32</td>
<td>802.11 BA</td>
<td>%1001 Block Acknowledgement (BlockAck)</td>
<td>0.000027</td>
</tr>
<tr>
<td>6.0</td>
<td>14</td>
<td>802.11 CTS</td>
<td>%1100 Clear To Send (CTS)</td>
<td>0.001865</td>
</tr>
<tr>
<td>24.0</td>
<td>32</td>
<td>802.11 BA</td>
<td>%1001 Block Acknowledgement (BlockAck)</td>
<td>0.000207</td>
</tr>
</tbody>
</table>

NDP is “invisible”
MU A-MPDU “Signature”

MU Sounding Exchange

Data TX
Where Does the Sniffer Go? Are There Conditions Under Which It Will Work?

- The sniffer doesn’t participate in the beam forming
- The sniffer is still isotropic
- The sniffer must be in line to see both the AP and client transmission
- An in line position is likely a noisier one
- The sniffer can only be in one place at a time
Questions?