Evolutions in 802.11 Design

High-Density, Capacity Planning and Survey Methodologies

Christian J. Estes CCIE Wireless #42615 CWNE #85

Certified Wireless Network Professional

IT Professional Wi-Fi Trek 2015 #wifitrek

Introduction

#wifitrek

- Solutions Architect for Dimension Data; Consulting Systems Engineer for Wireless Practice
- 6 years at Cisco in Wireless Networking Business Unit on the Wireless Escalation team
 - Duke University, Bank of America, Target, Apple, NYSE, and Stanford University
- Authored the Voice over Wireless LAN Troubleshooting located on CCO
- Technical Editor for the Cisco Press book entitled, "<u>Designing and Deploying 802.11n Wireless</u> <u>Networks - First Edition</u>" along with Tom Carpenter and authored by Jim Geier.
- B.S. in Computer Engineering and M.S. Degree in Information Assurance
- CWNE #85, CCIE Wireless #42615

'lulu Meraki

CMNP

Agenda

- High Density Use Cases
- 802.11n vs. 802.11ac
- SU-MIMO vs. MU-MIMO
- MU-MIMO, TxBF and Antenna Selection
- Spectrum Use / Reuse
- Capacity Planning
- Customer Scenario
 - Calculating Total System Throughput (TST)
 - Per Device Throughput (PDT)
 - General Capacity Planning
- Wireless LAN Best Practices for High Density

High-Density Use Cases

- As the industry evolves, users always seem to find a way to exhaust the available spectrum.
- High-Density deployments have become very prevalent for:
 - University Lecture Halls and Classrooms
 - Auditoriums
 - Conference Centers
 - Stadiums
 - Malls and Retail Venues
 - Theme Parks

802.11n vs. 802.11ac

Key Differences

	802.11n	802.11ac Enhancements
Channel Widths	20 and 40 MHz channel-width	Increased channel-widths to 80 &160 MHz
Frequency Bands	2.4 GHz and 5 GHz frequency bands	Available only in 5 GHz.
Modulation	BPSK, QPSK, 16, 64 QAM	Adds 256-QAM (Tighter Modulation) Adds two more bits on each carrier increasing it from 6 to 8, increasing capacity for 11ac by 33%
Beamforming	Many types of (optional, proprietary) implicit beamforming	Supports ONLY (NDP) null data packet explicit beamforming Facilitates about a 3 dB performance gain.
Spatial Streams (PHY Data Rate)	Up to 4x4:4 spatial streams (600 Mbps at 40 MHz)	Up to 4x4:4 SS (Wave 1) spatial streams (1.3 Gbps at 80 MHz) Supports client devices up to 2SS Up to 8x8:4SS (Wave 2) spatial str4eams (3.467 Gbps at 160 MHz) Supports client devices up to 4SS
Frame Aggregation	Selective use of A-MPDU, A-MSDU, and A-MPDU of A-MSDU	Requires every 802.11ac transmission to be sent as an A-MPDU aggregate. Utilizes larger A-MSDU values thus reducing TxOP's
MIMO Mode	SU-MIMO – Transmits to a single client.	MU-MIMO (Wave 2) – Transmits downlink to Multiple Users simultaneously.

Certified Wireless Network Professional

802.11ac - MCS Rates

Theoretical	Fheoretical throughput for a <u>single spatial stream</u> (in Mbit/s)									
MCS	Modulation	Coding	20 MHz channels		40 MHz channels		80 MHz channels		160 MHz channels	
index	type	rate	800 ns GI	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI
0	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5	58.5	65
1	QPSK	1/2	13	14.4	27	30	58.5	65	117	130
2	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5	175.5	195
3	16-QAM	1/2	26	28.9	54	60	117	130	234	260
4	16-QAM	3/4	39	43.3	81	90	175.5	195	351	390
5	64-QAM	2/3	52	57.8	108	120	234	260	468	520
6	64-QAM	3/4	58.5	65	121.5	135	263.3	292.5	526.5	585
7	64-QAM	5/6	65	72.2	135	150	292.5	325	585	650
8	256-QAM	3/4	78	86.7	- Me	sign	Chit	390	702	780
9	256-QAM	Vêr	v Sp	ecati	180	200	390	433.3	780	866.7

MIMO and Antenna Selection

IT Professional Wi-Fi Trek 2015 #wifitrek

SU-MIMO (11n) vs. MU-MIMO (11ac)

• SU-MIMO (802.11n) limits transmissions to a single station.

• MU MIMO (802.11ac – Wave 2) transmits "x" number of streams to multiple clients

MU-MIMO – Multi-User MIMO

NDP (explicit) TxBF Beamforming

Here is how Explicit Beam forming helps

- An AP transmits a "(VHT) Null Data Packet (NDP) Announcement," frame. Its purpose is to contain the address of the AP and the target recipients.
 Client 1
 The VHT NDR Amouncement many is immediately followed by a VHT Null Data Packet" (VHT NDP) intended
- for those target recipients 3. Each intended recipient measures the Rift channel from the AP to itself using the preamble of the VHT NDP and
- 3. Each intended recipient measures the Rient channel from the AP to itself using the preamble of the VHT NDP and compresses the channel.
- 4. The first intensed recipient responds with the compressed channel information in a VHT Compressed Beamforming frame immediately, and other recipients respond when they are polled by the AP.
- 5. The AP receives the compressed beamforming frame from the first beamformee, then after a SIFS the AP sends the beamforming report poll frame to the next client, who responds after SIFS and so on.

Patch, Panel or Sector Antennas

Antenna Selection

- 802.11n/ac 2.4/5 GHz 10/11 dBi Panel Antenna with N-Style Jack Connector
 - Aerohive AP 170
 - Aruba AP 134
 - Aruba AP 224
 - Cisco AP 2602e
 - Cisco AP 3602e
 - Cisco AP 3702e
 - Meraki AP MR66
 - Motorola AP 7131
 - Motorola AP 8132

Indoor Patch Antennas

Cisco Live

- 603c61 A/acna 4/2.461 H 2/5 H 2/6 d Batal M OAuton van weith R (AIN CARIT25 6 G P4 H ACR)^r
 - Cisco AP 2702e
 - Cisco AP 3702e

Directional Antennas and Downtilt

Inner and Outer Cell Radius

The values for the formula above are:

- H = height of the antenna
- A = downtilt angle
- BW = the 3 dB horizontal beamwidth of the antenna

Data Rate vs. Coverage

Unarest in Rows EMetching

MU-MIMO – Theoretical Examples

AP to Client Scenario	Device Type	PHY Rate	Aggregate Capacity
(1) antenna AP / (1) antenna STA, 80 MHz	Handheld	433 Mbit/s	433 Mbit/s
(2) antenna AP / (2) antenna STA, 80 MHz	Tablet, Laptop	867 Mbit/s	867 Mbit/s
(1) antenna AP / (1) antenna STA, 160 MHz	Handheld	867 Mbit/s	867 Mbit/s
(2) antenna AP / (2) antenna STA, 160 MHz	Tablet, Laptop	1.69 Gbit/s	1.69 Gbit/s
(4) antenna AP (4) singe antenna STAs, 160 MHz (MU-MIMO)	Handheld	867 Mbit/s to each STA	3.39 Gbit/s
Hypothetical Scenarios (8x8:8SS) (8) antenna AP, 160 MHz (MU-MIMO) • (1) four-antenna STA (4SS) • (1) two-antenna STA (2SS) • (2) one-antenna STA (2SS)	Digital TV, Set-top Box, Tablet, Laptop, PC, Handheld	 3.39 Gbit/s to four-antenna STA 1.69 Gbit/s to two-antenna STA 867 Mbit/s to each one-antenna STA 	6.77 Gbit/s
(8) antenna AP, (4) 2-antenna STAs, 160 MHz (MU-MIMO)	Digital TV, tablet, laptop, PC	1.69 Gbit/s to each STA	6.77 Gbit/s

Spectrum Use/Reuse

IT Professional Wi-Fi Trek 2015 #wifitrek

Wireless Spectrum Management

Reforming 5 GHz to optimize for 11ac

More non-overlapping channels enabling better 802.11ac experience

- Reclaim channels between 120 through 128.
- Increase capacity by allowing channels 68-96, 120-128, 169-177
- Use DFS channels for High Density
- All major OS's (Mac OS, Windows, Windows Phone, IOS and Android) all support DFS channels.

Channel–Width (MHz)	Currently Available	New / Next Channels
20	22	37
40	10	18
80	5	9
160	1	4

Spatial Use / Reuse

Increased Re-use Distance

3 Channel

Spatial Reuse at 20 MHz.

- 3 Channel (1, 6, 11) as in 2,.4 GH:
- 9 Channel (Non-DFS)
- 23 Channel (DFS)

Larger Segmentation of same channel cells.

Spatial Reuse at 40 and 80 MHz.

- 40 MHz 10 Channels
- 80 MHz 5 Channels

Fewer channels limits distance between same channel cells

RTS/CTS with Bandwidth Signaling

802.11ac

No Interference

- 1. Initiator sees that 80 MHz is clear
- 2. Recipient reports that 80 MHz is clear
- 3. Initiator sends data across the full 80 MHz
- 4. Results in successful transmission

(a) No Interference Case

Interference

- 1. Initiator sees that 80 MHz is clear
- 2. Recipient reports that only 40 MHz is clear
- 3. Initiator sends data only on the clear 40 MHz
- 4. Interference avoided resulting in successful transmission

Customer Scenario

IT Professional Wi-Fi Trek 2015 #wifitrek

Customer Scenario – Apple Store

Assumptions

- Cisco Wireless LAN Deployment → 3702e Access Point (4x4:3SS) 11n/ac
- Application / Throughout SLA: 2 Mbps Per Client Minimum
- Short-Guard Interval (400 ns)
- Throughput is exhausted at 80% Channel Utilization
- Pre-Deployment Survey Client Inventory

Device Type	Chipset Type	Frequency Band	Channel-Width	Spatial Streams	PHY Rate (256 QAM)	PHY Rate (64 QAM)
MacBook Pro (2014)	Broadcom	2.4, 5 GHz	HT80, MIMO	3SS	1.3 Gbps	975 Mbps
iPad Air 2	Broadcom	2.4, 5 GHz	HT80, MIMO	2SS	866.7 Mbps	650 Mbps
iPhone 6	Broadcom	2.4, 5 GHz	HT80	1SS	433.3 Mbps	325 Mbps

Actual TCP/IP Throughput is 40-50% of PHY Rate

Gathering Requirements

- What is the Per Device Throughput Requirement or SLA
- 2. What type of client stations does the customer have in their environment and how many spatial streams do their devices support?
- 3. How many devices are capable of utilizing 5 GHz vs. 2.4 GHz?
- 4. What is the Associated Device Sount (ADC)?
- 5. What is the current Derice Duty Cycle on the WLAN?
- 6. How many SSI2 shoes the customer have in their deployment?
- 7. What type of AP does the customer have or intend to deploy?
- 8. What are the channel-widths supported by the Wireless LAN?

Site Survey Methodologies

Pre-Deployment

- Predictive Site Survey Planning Tools
 - Defines Coverage and Cell Edge
 - Approx PHY Rate
- Active Survey (Associated)
 - PHY Rate / TCP/IP Throughput
 - Retry Rates, Packet Loss
 - Specific Client, RSSI, SNR

Post Deployment

- Passive Site Survey (Not-Associated)
 - Coverage Validation
 - RSSI, SNR, SSID's
- Spectrum Analysis
 - Measures FFT Duty Cycle
 - FFT DC displays signal > 20 dB above noise floor

Cell Edge Design Example (Data Only):

Initial Site Survey

- 17 dBm (5 GHz) and 20 dBm (2.4 GHz)
- -67 at 60 and 75 ft respectively

Cell Edge Design Example (BYOD Only):

Remediation

- Utilize 6 dB rule.
- Reduce Tx Power to 11 dBm (5 GHz) and 14 dBm (2.4 GHz)
- -67 at 30 and 37.5 ft respectively

Capacity Planning

...a practical approach to High Density

Certified Wireless Network Professional

IT Professional Wi-Fi Trek 2015 #wifitrek

Calculating Total System Throughput

Capacity of an 11ac Channel

TST = Channels * Average Channel Throughput * Reuse Factor

Step 1 – Channel Table			Step 2 – Unimpaired Throughput						
Channel Type 5-GHz Channels (USA)		5-GHz Channels (USA)	Spatial Streams	50 Concurrent Clie	ents Conc	75 current Clients	100 Concurrent Clients		
Non-DFS		9	1SS Device	50 Mbps	38 Mbps		30 Mbps		
DFS		11	2SS Device	100 Mbps	72 Mbps		50 Mbps		
Total		20	3SS Device	158 Mbps		118 Mbps	78 Mbps		
Step 3 – Impa	irment Perce	entage (Subjective)	Step 4 – Całculate	Total Spectrum Thro	ughput				
Venue	5 GHz	2.4 GHz	Venue	Reuse Factor	5 GHz	– TST	2.4 GHz - TST		
Apple Store	10%	25%	Apple Store	1{	9 * 90 Mbps * R = 810 Mbps 3 * 75		3 * 75 = 225 Mbps		
Non-DFS	100 = 90 Mb	ops 100 = 75 Mbps	Non-DES-Plan	-					
DFS	50 = 45 Mbp	os 50 = 37.5 Mbps	Apple Store DFS Plan		20 * 45 Mbps *	R = 900 Mbps	3 * 37.5 = 112.5 Mbps		

Calculating Per Device Throughput

PDT = Total System Throughput / (Associated Device Capacity * Duty Cycle)

- <u>Associated Device Capacity</u> Percentage of users with an active Wi-Fi device * average number of Wi-Fi devices per person. Calculations should be performed per frequency.
- <u>Device Duty Cycle</u> Average percent of time that a given user attempts to transmit.

#	Venue	Users	Adoption Rate	Devices Per Person	ADC	Band Split (5 / 2.4 GHz)	Duty Cycle	5 GHz - TST	2.4 GHz - TST
1	Apple Store	250	50%	1.65	206	90 / 10	20%	810	225
250 Users * 50% Adoption (125) * Devices Per User = 206 (ADC)						185 / 21 Users		810 / (185 * .20) 22 Mbps PDT	225 / 21 * .20 56 Mbps PDT

 User duty cycle is subjective, as an example we will utilize 20% to represent email, web browsing, and social networking.

Capacity Planning 802.11n

802.11n Equation

Throughput Req. / (50% of Link Data Rate) = Per Client Airtime * # of Clients / 80% Channel Utilization = AP Radios

Applied

- 2 Mbps / 202.5 = .99% * 103 Clients = 101.97.
- 2 Mbps / 67.5 = 2.96% * 103 Clients = 304.88.
- (101.97 + 304.88) 406.85 / 80%CU = 508.65 or (6) 5 GHz AP Radios

Client Device	Application or	Device	Application Throughput	2.4 GHz Band			<u>5 GHz Band</u>			<u>Client</u> Link Data Rate	<u>TCP/IP</u> <u>Throughput</u>
	Throughput SLA	Quantity		Assoc.	Active	Airtime	Assoc.	Active	Airtime		
Laptop (11n, 3SS, 40 MHz)	2 Mbps PDT	1	2 Mbps	0	0	0%	1	1	0.99%	405.0	202.5
Tablet (11n, 1SS, 40 MHz)	2 Mbps PDT	1	2 Mbps	0	0	0%	1	1	2.96%	135	67.5

Capacity Planning 802.11n vs. 802.11ac

TCP/IP **Client** Link Data Rate **Throughput** 5 GHz Band Application / Application Device **Client Device** Throughput SLA Throughput Qty Assoc. Active Airtime 405.0 202.5 Laptop 2 Mbps PDT 1 2 Mbps 1 1 0.99% (11n, 3SS, 40 MHz) 405.0 202.5 Laptop 2 Mbps PDT 1 2 Mbps 1 1 0.82% (11ac, 3SS, 80 MHz) 135 67.5 Tablet 2 Mbps PDT 2.96% 1 2 Mbps 1 1 (11n, 1SS, 40 MHz) 135 67.5 Tablet 2 Mbps PDT 2 Mbps 1 1 2.47% 1 (11ac, 1SS, 80 MHz)

2 Mbps / 67.5 = .0296 (2.96.%) * 80 Clients \ 80% Channel Utilization = 2.96; which is equal to (3) 5 GHz AP Radio

Air Time Correlations – 20, 40 and 80 MHz

Application Throughput vs. Spatial Streams

Client Device	Application or Throughput SLA	Device	Device Application		<u>5 GHz Band (80 Mhz)</u>			
		Quantity	Throughput	Assoc.	Active	Airtime		
Smart Phone (11ac, 1SS, 80 MHz)	250 Kbps per-device throughput SLA	1	250 Kbps	1	1	0.32%		
Smart Phone (11ac, 1SS, 80 MHz)	500 Kbps per-device throughput SLA	1	500 Kbps	1	1	0.64%		
Smart Phone (11ac, 1SS, 80 MHz)	1 Mbps per-device throughput SLA	1	1 Mbps	1	1	1.28%		
Smart Phone (11ac, 1SS, 80 MHz)	2 Mbps per-device throughput SLA	1	2 Mbps	1	1	2.56%		
Laptop (11ac, 2SS, 80 MHz)	250 Kbps per-device throughput SLA	1	250 Kbps	1	1	0.08%		
Laptop (11ac, 2SS, 80 MHz)	500 Kbps per-device throughput SLA	1	500 Kbps	1	1	0.16%		
Laptop (11ac, 2SS, 80 MHz)	1 Mbps per-device throughput SLA	1	1 Mbps	1	1	0.32%		
Laptop (11ac, 2SS, 80 MHz)	2 Mbps per-device throughput SLA	1	2 Mbps	1	1	0.64%		

Wireless LAN Best Practices

IT Professional Wi-Fi Trek 2015 #wifitrek

Cisco Unified Wireless LAN Controller

- General Guidelines
 - Channel Plans
 - 20 MHz for most Deployments
 - 40 MHz for some Single-Floor Deployments where CCI can be mitigated
 - Data Rates
 - 2.4 GHz. MBR 24 Mbps
 - 5 GHz. MBR 12 24 Mbps
 - Disable all Lower Data Rates
 - Transmit Power Control
 - Power 11 dB (14 mW)
 - Transmit Power Throttling and DTPC
 - Cell Edge Design
 - -65 to -67 Cell Edge
 - SNR 25 or Better

Optimizes Cell Size

- High-Density Features
 - RF Profiles > Data Rates > RRM > High Density
 - Band Select / Client Load-Balancing (except VoWLAN
 - Dynamic Band Width Allocation (DBA)
 - Air Time Fairness (ATF)
 - Rx-SOP
- QoS (802.1p) and/or WMM
 - LB-CAC
- Encryption (802.11n)
 - WPA2-AES CCMP
 - Required for 802.11n HT rates
- Mobility
 - 5 GHz (20 % Cell Overlap)
 - 2.4 GHz. (10-15%)

Dynamic Bandwidth Allocation (WLAN)

 Before

 Complex configuration and inefficient use of spectrum

 Interference impacts

80 MHz...what can I use?

Radio Resource Management (RRM) selects channel only

Difficult to find nonoverlapping channels

After Automatic and intelligent use of spectrum

- 80-MHz channel 52/56/60/64
- · Interference is impacting only channel 60

 3x20 MHz channels still available or 1x40 MHz and 1x20 MHz

> RRM selects channel and channel width

Automatic detection of non-overlapping channels

Air Time Fairness (ATF)

Receive Sensitivity Threshold (Rx-SOP)

802.11 Band	High Threshold	Medium Threshold	Low Threshold	Auto
5 GHz	-76 dBm	-78 dBm	-80 dBm	Use Radio Default
2.4 GHz.	-79 dBm	-82 dBm -20 dBm to -81 dBm	-85 dBm	Use Radio Default

Special Thanks to:

- Jerome Henry, Cisco
- Fredrick Niehaus, Cisco
- Jim Florwick, Cisco
- Samuel Clements, Presidio
- Scott Fella, CDW
- Andrew Von Nagy
- Erik Klaubert and Kit Johnson, Dimension Data

