

Certified Wireless Analysis Professional (CWAP-403) Objectives

Introduction

When you pass the CWAP exam and hold a valid CWNA certification, you earn the CWAP certification and credits towards the CWNE certification should you choose to pursue it.

The Certified Wireless Analysis Professional (CWAP) is responsible for the capture and analysis of data related to wireless networks following troubleshooting principles and methodology. This professional has an in-depth understanding of protocols, frame exchanges and standards at the Physical layer and MAC sublayer. This person is proficient in the use of spectrum and protocol analysis tools.

The skills and knowledge measured by this examination are derived from a Job Task Analysis (JTA) involving wireless networking experts (CWNEs) and professionals. The results of this JTA were used in weighing the subject areas and ensuring that the weighting is representative of the relative importance of the content.

Subject matter experts (SMEs) involved in the development of these objectives and/or the JTA included:

Robert Bartz, Tom Carpenter, Adrian Granados, Brett Hill, Ravi Kiran Gundu, Manon Lessard, Peter Mackenzie, and R. David Paine III.

The following table provides the breakdown of the exam as to the distribution of questions within each knowledge domain.

Knowledge Domain	Percentage
Protocol Analysis	15%
Spectrum Analysis	15%
PHY Layers and Technologies	10%
MAC Sublayer and Functions	25%
WLAN Medium Access	10%
802.11 Frame Exchanges	25%

CWNP Authorized Materials Use Policy

CWNP does not condone the use of unauthorized 'training materials' such as 'brain dumps'. Individuals who utilize such materials to pass CWNP exams will have their certifications revoked. In an effort to more clearly communicate CWNP's policy on use of unauthorized study materials, CWNP directs all certification candidates to the CWNP Candidate Conduct Policy at:

http://www.cwnp.com/wp-content/uploads/pdf/CWNPCandidateConductPolicy.pdf

Please review this policy before beginning the study process for any CWNP exam. Candidates will be required to state that they understand and have abided by this policy at the time of exam delivery. If a candidate has a question as to whether study materials are considered "brain dumps", he/she should perform a search using CertGuard's engine, found here: http://www.certguard.com/search.asp

1.0 Protocol Analysis – 15%

1.1 Capture 802.11 frames using the appropriate methods and locations

- 1.1.1 Install monitor mode drivers
- 1.1.2 Select appropriate capture device
- 1.1.3 Select appropriate capture location
- 1.1.4 Capture for an appropriate amount of time based on the problem scenario
- 1.1.5 Scanning channels vs. capturing on a single channel
- 1.1.6 Capturing in roaming scenarios
- 1.1.7 Capture with portable protocol analyzers (laptops)
- 1.1.8 Capture with APs, controllers, and other management solutions
- 1.1.9 Capture with specialty devices such as handheld analyzers
- 1.2 Analyze 802.11 frame captures to discover problems and find solutions
 - 1.2.1 Use appropriate display filters to view relevant frames and packets
 - 1.2.2 Use colorization to highlight important frames and packets
 - 1.2.3 Configure and display columns for analysis purposes
 - 1.2.4 View frame and packet decodes and understand the information shown and apply it to the analysis process
 - 1.2.5 Use multiple adapters and channel aggregation to view captures from multiple channels
 - 1.2.6 Implement protocol analyzer decryption procedures
 - 1.2.7 View and use captures statistical information for analysis
 - 1.2.8 Use expert mode for analysis
 - 1.2.9 View and understand peer maps as they relate to communications analysis
- 1.3 Understand and apply the common capture configuration parameters available in protocol analysis tools
 - 1.3.1 Save to disk
 - 1.3.2 Packet slicing
 - 1.3.3 Event triggers
 - 1.3.4 Buffer options
 - 1.3.5 Channels and channel widths
 - 1.3.6 Capture filters
 - 1.3.7 Channel scanning and dwell time

1.4 Utilize additional tools that capture 802.11 frames for the purposes of analysis and troubleshooting

- 1.4.1 WLAN scanners and discovery tools
- 1.4.2 Protocol capture visualization and analysis tools
- 1.4.3 Centralized monitoring, alerting and forensic tools
- 1.5 Ensure appropriate troubleshooting methods are used with all analysis types
 - 1.5.1 Define the problem
 - 1.5.2 Determine the scale of the problem
 - 1.5.3 Identify probably causes
 - 1.5.4 Capture and analyze the data
 - 1.5.5 Observe the problem
 - 1.5.6 Choose appropriate remediation steps
 - 1.5.7 Document the problem and resolution

2.0 Spectrum Analysis – 15%

- 2.1 Capture RF spectrum data and understand the common views available in spectrum analyzers
 - 2.1.1 Install, configure and use spectrum analysis software and hardware
 - Configure Wi-Fi integration
 - Save and export capture data
 - 2.1.2 Capture RF spectrum data using handheld, laptop-based and infrastructure spectrum capture solutions
 - 2.1.3 Understand and use spectrum analyzer views
 - Real-time FFT
 - Waterfall, swept spectrogram, density and historic views
 - Utilization and duty cycle
 - Detected devices
 - WLAN integration views
- 2.2 Analyze spectrum captures to identify relevant RF information and issues
 - 2.2.1 Determine the RF noise floor in an environment
 - 2.2.2 Determine Signal-to-Noise Ration (SNR) for a given signal
 - 2.2.3 Locate and identify sources of RF interference
 - 2.2.4 Identify RF channel utilization
 - 2.2.5 Analyze a non-Wi-Fi transmitter and its impact on WLAN communications
 - 2.2.6 Overlapping and non-overlapping adjacent channel interference
 - 2.2.7 Poor performing or faulty radios

2.3 Analyze spectrum captures to identify various device signatures

- 2.3.1 Identify frequency hopping devices
- 2.3.2 Identify various 802.11 PHYs
 - 802.11b
 - 802.11g
 - 802.11a
 - 802.11n
 - 802.11ac
 - Channel widths
 - Primary channel
- 2.3.3 Identify non-802.11 devices based on RF behaviors and signatures
 - Microwave oven
 - Video devices
 - Jammers
 - Cordless phones
- 2.4 Centralized spectrum analysis solutions
 - 2.4.1 AP-based spectrum analysis
 - 2.4.2 Sensor-based spectrum analysis

3.0 PHY Layers and Technologies – 10%

- 3.1 Understand and describe the functions and the PLCP and PMD sublayers
- 3.2 Apply the understanding of PHY technologies (including PHY headers, preambles, training fields, frame aggregation and data rates) to captured data
 - 3.2.1
 DSSS

 3.2.2
 HR/DSSS

 3.2.3
 OFDM

 3.2.4
 ERP

 3.2.5
 HT

 3.2.6
 VHT
- 3.3 Identify and use PHY information provided in pseudo-headers within protocol analyzers
 - 3.3.1 Pseudo-header formats
 - Radiotap
 - Per Packet Information (PPI)

- 3.3.2 Signal strength
- 3.3.3 Data rate and MCS index
- 3.3.4 Length information
- 3.3.5 Channel center frequency or received channel
- 3.3.6 Channel properties
- 3.3.7 Noise
- 3.4 Recognize the limits of protocol analyzers in capturing PHY information including NULL data packets and PHY headers
- 3.5 Use appropriate capture devices based on an understanding of PHY types
 - 3.5.1 Supported PHYs
 - 3.5.2 Supported spatial streams
 - 3.5.3 Short Guard Interval (SGI)

4.0 MAC Sublayer and Functions – 25%

- 4.1 Understand frame encapsulation and frame aggregation
- 4.2 Identify and use MAC information in captured data for analysis
 - 4.2.1 Management, control, and data frames
 - 4.2.2 MAC Frame Format
 - Frame Control Field
 - To DS and From DS
 - Address Fields
 - Frame Check Sequence (FCS)
 - 4.2.3 802.11 Management Frame Formats
 - Information Elements
 - Authentication
 - Association and Reassociation
 - Beacon
 - Probe Request and Probe Response
 - 4.2.4 Data and QoS Data Frame Formats
 - 4.2.5 802.11 Control Frame Formats
 - Acknowledgement
 - RTS/CTS
 - Block Acknowledgement and related frames

- 4.3 Validate BSS configuration through protocol analysis
 - 4.3.1 Country code
 - 4.3.2 Minimum basic rate
 - 4.3.3 Supported rates
 - 4.3.4 Beacon intervals
 - 4.3.5 WMM settings
 - 4.3.6 RSN settings
 - 4.3.7 HT and VHT operations
 - 4.3.8 Channel width
 - 4.3.9 Primary channel
 - 4.3.10 Hidden or non-broadcast SSIDs
- 4.4 Identify and analyze CRC error frames and retransmitted frames

5.0 WLAN Medium Access – 10%

- 5.1 Understand 802.11 contention algorithms in-depth and know how they impact WLANs
 - 5.1.1 Distributed Coordination Function (DCF)
 - Carrier Sense and Energy Detect
 - Network Allocation Vector (NAV)
 - Contention Window (CW) and random backoff
 - Interframe Spacing
 - 5.1.2 Enhanced Distributed Channel Access (EDCA)
 - EDCA Function (EDCAF)
 - Access Categories and Queues
 - AIFSN
 - 5.1.3 Wi-Fi Multimedia (WMM)
 - WMM parameters
 - WMM Power Save
 - WMM Admission Control
- 5.2 Analyze QoS configuration and operations
 - 5.2.1 Verify QoS parameters in capture files
 - 5.2.2 Ensure QoS is implemented end-to-end

6.0 802.11 Frame Exchanges – 25%

6.1 Capture, understand, and analyze BSS discovery and joining frame exchanges

- 6.1.1 BSS discovery
- 6.1.2 802.11 Authentication and Association
- 6.1.3 802.1X/EAP exchanges
- 6.1.4 Pre-shared key authentication
- 6.1.5 Four-way handshake
- 6.1.6 Group key exchange
- 6.1.7 Pre-FT (802.11r) fast secure roaming mechanisms
- 6.1.8 Fast BSS Transition (FT) roaming exchanges and fast secure roaming
- 6.1.9 Hotspot 2.0 protocols and operations from a client access perspective (ANQP and initial access)
- 6.1.10 Neighbor discovery
- 6.2 Analyze roaming behavior and resolve problems related to roaming
 - 6.2.1 Sticky clients
 - 6.2.2 Excessive roaming
 - 6.2.3 Channel aggregation for roaming analysis
- 6.3 Analyze data frame exchanges
 - 6.3.1 Data frames and acknowledgement frames
 - 6.3.2 RTS/CTS data frame exchanges
 - 6.3.3 QoS data frame exchanges
 - 6.3.4 Block Acknowledgement exchanges
- 6.4 Analyze HT/VHT-specific transmission methods
 - 6.4.1 MIMO
 - 6.4.2 Transmit Beamforming (TxBF)
 - 6.4.3 MU-MIMO
 - 6.4.4 Frame aggregation (A-MSDU and A-MPDU)
- 6.5 Analyze behavior and resolve problems related to MAC layer operations
 - 6.5.1 Power Save operations
 - 6.5.2 Protection mechanisms
 - 6.5.3 Load balancing
 - 6.5.4 Band Steering

CWAP-403 Exam Acronyms

For the CWAP-403 exam, you should be able to understand clearly define the following acronyms in relation to 802.11 WLAN operations and analysis. Such acronyms shall be used on the CWAP-403 exam without definition.

AAA	Authentication, Authorization, and Accounting
ACI	Adjacent Channel Interference
AD DS	Active Directory Domain Services
AES	Advanced Encryption Standard
AP	Access Point
ARM	Adaptive Radio Management
ASK	Amplitude Shift Keying
BPSK	Binary Phase Shift Keying
BSA	Basic Service Area
BSS	Infrastructure Basic Service Set
BSSID	Basic Service Set Identifier
BYOD	Bring Your Own Device
CCI	Co-Channel Interference
ССМР	Counter Mode with Cipher Block Chaining Message Authentication Protocol
CIA	Confidentiality, Integrity, and Availability
CRC	Cyclic Redundancy Check
СТЅ	Clear to Send
dB	Decibel
dBi	Decibel to Isotropic
dBm	Decibel to Milliwatt
DFS	Dynamic Frequency Selection

DHCP	Dynamic Host Configuration Protocol
DMG	Directional Multi-Gigabit
DMZ	Demilitarized Zone
DNS	Domain Name System
DRS	Dynamic Rate Switching
DS	Distribution System
DSM	Distribution System Medium
DSSS	Direct Sequence Spread Spectrum
EAP	Extensible Authentication Protocol
EIRP	Equivalent Isotropically Radiated Power
ERP	Extended Rate PHY
ESS	Extended Service Set
FCC	Federal Communications Commission
FHSS	Frequency Hopping Spread Spectrum
FSK	Frequency Shift Keying
FSR	Fast Secure Roaming
FT	Fast BSS Transition
FTP	File Transfer Protocol
Gbps	Gigabits Per Second
GBps	Gigabytes Per Second
GHz	Gigahertz
GI	Guard Interval
GTK	Group Temporal Key
HR/DSSS	High Rate DSSS
HT	High Throughput

НТТР	Hypertext Transfer Protocol
Hz	Hertz
IBSS	Independent Basic Service Set
IEEE	Institute of Electrical and Electronics Engineers
IETF	Internet Engineering Task Force
IoT	Internet of Things
IP	Internet Protocol
IR	Intentional Radiator
ISP	Internet Service Provider
LAN	Local Area Network
LDAP	Lightweight Directory Access Protocol
LED	Light Emitting Diode
MAC	Medium Access Control
Mbps	Megabits Per Second
MBps	Megabytes Per Second
MBSS	Mesh Basic Service Set
MCA	Multiple Channel Architecture
MCS	Modulation and Coding Scheme
MDM	Mobile Device Management
MHz	Megahertz
ΜΙΜΟ	Multiple-Input/Multiple-Output
MOS	Mean Opinion Score
MSK	Master Session Key
MU-MIMO	Multi-User MIMO
mW	Milliwatt

NAC	Network Access Control
NIC	Network Interface Card
NTP	Network Time Protocol
OFDM	Orthogonal Frequency Division Multiplexing
ОКС	Opportunistic Key Caching
ΟΤΑ	Over-the-Air
PCI-DSS	Payment Card Industry Data Security Standard
PD	Powered Device
РНҮ	Physical Layer
PIN	Personal identification Number
PKI	Public Key Infrastructure
PoE	Power over Ethernet
PSE	Power Source Equipment
PSK	Pre-Shared Key or Phase Shift Keying
РТК	Pairwise Transient Key
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RADIUS	Remote Authentication Dial-In User Service
RBAC	Role-Based Access Control
RC4	Rivest Cipher 4
RF	Radio Frequency
RFC	Request for Comments
RRM	Radio Resource Management
RSNA	Robust Security Network Association
RSNA	Robust Security Network

RSSI	Received Signal Strength Indicator
RTS	Request to Send
Rx	Receive or Receiver
\$1G	Sub-1 GHz
SCA	Single Channel Architecture
SINR	Signal-to-Interference plus Noise Ratio
SISO	Single-Input/Single-Output
SNR	Signal-to-Noise Ratio
SOHO	Small Office Home Office
SS	Spatial Streams
SSH	Secure Shell
SSID	Service Set Identifier
STA	Station
ТСР	Transmission Control Protocol
ТКІР	Temporal Key Integrity Protocol
TVHT	Television Very High Throughput
Тх	Transmit or Transmitter
UDP	User Datagram Protocol
VHT	Very High Throughput
VLAN	Virtual Local Area Network
VM	Virtual Machine
VoIP	Voice over Internet Protocol
VoWLAN	Voice over WLAN
VPN	Virtual Private Network
W	Watt

- WEPWired Equivalent PrivacyWLANWireless Local Area networkWNMSWireless Network Management SystemWPAWi-Fi Protected Access
- WPA2 Wi-Fi Protected Access version 2