Keith R. Parsons – CWNE #3

IT Professional Wi-Fi Trek 2015 #wifitrek

Keith R. Parsons

Managing Director Wireless LAN Professionals, Inc.

MBA with emphasis in Quantitative Analysis 65+ Certifications - CWNE #3

Designed Wi-Fi for over 3,000 Classrooms

15 years experience in Wireless LANs

Define, Design, Implement, Validate, Troubleshoot

@KeithRParsons on Twitter
<u>http://WLANPros.com</u>
<u>keith@WLANPros.com</u>

IT Professional Wi-Fi Trek 2015 #wifitrek

Just because it works...

Doesn't mean it works...

MCS Index - 802.11n and 802.11ac

802.lln 802.llac

HT	VHT	ИТ			20MHz		40MHz		80MHz		IGOMHZ	
MCS	MCS	Spatial			Data Rate	Data Rate						
Index	Index	Streams	Modulation	Coding	No SGI	SGI	No SGI	SGI	No SGI	SGI	No SGI	SGI
0	0	1	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5	58.5	65
1	1	1	QPSK	1/2	B	14.4	27	30	58.5	65	117	130
2	2	1	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5	175.5	195
3	3	1	KG-QAM	1/2	26	28.9	54	60	17	130	234	260
4	4	1	K-QAM	3/4	39	43.3	81	90	175.5	195	351	390
5	5	1	64-QAM	2/3	52	57.8	108	120	234	260	468	520
6	6	1	64-QAM	3/4	58.5	65	1215	135	263.3	292.5	526.5	585
7	7	1	64-QAM	5/6	65	72.2	135	150	292.5	325	585	650
	8	1	256-QAM	3/4	78	86.7	162	180	351	390	702	780
	9	l.	256-QAM	5/6	n/a	n/a	180	200	390	433.3	780	866.7
8	0	2	BPSK	1/2	B	14.4	27	30	58.5	65	117	130
9	1	2	QPSK	1/2	26	28.9	54	60	17	130	234	260
Ю	2	2	QPSK	3/4	39	43.3	81	90	175.5	195	351	390
l.	3	2	KG-QAM	1/2	52	57.8	108	120	234	260	468	520
12	4	2	KG-QAM	3/4	78	86.7	162	180	351	390	702	780
В	5	2	64-QAM	2/3	104	15.6	216	240	468	520	936	1040
14	6	2	64-QAM	3/4	117	130.3	243	270	526.5	585	1053	170
15	7	2	64-QAM	5/6	130	144.4	270	300	585	650	170	1300
	8	2	256-QAM	3/4	156	173.3	324	360	702	780	1404	1560
	9	2	256-QAM	5/6	n/a	n/a	360	400	780	866.7	1560	1733.3

7 Myths about Wireless LANs

Simple & Easy - Only Need Ratios

Wi-Fi scales easily - "It works at home!"

Wi-Fi is like Ethernet

Wi-Fi is like Cellular

More Access Points equals More Capacity

Wireless LANs must support legacy clients

All Access Points are basically the same...

Myth #1 - Simple & Easy

Ratios Rule!

One Access Point Every _____

- 2,000 Square Feet
- 300 Attendees
- Classroom

Simple - Enticing - Sales Driven

#1 - Reality

Engineering for Radio Frequency and 802.11 Protocols is heavily dependent on complex mathematics

Meeting specific requirements far more important than mere ratios can express

Engineering Examples

- Structural Engineering
- Sound Engineering
- Civil Engineering
- Materials Engineering
- All highly dependent on complex math, equations, formulas and advanced software

WLAN Engineering

 Also highly dependent on complex math, formulas, and advanced software to Model Radio Frequencies

Characteristic Impedance of Free Space

$$\eta_{o} = \sqrt{\frac{\mu_{o}}{\epsilon_{o}}} = 120\pi\Omega = 377\Omega$$
where: $\mu_{o} = \text{free space permeability}$
 $= 4.0\pi \times 10^{-7}(\text{H/m})$
 $\epsilon_{o} = \text{free space permitivity}$
 $= \left(\frac{10^{-9}}{36\pi}\right)(\text{F/m})$
 $c = \sqrt{\mu_{o}}\epsilon_{o} = \text{propagation velocity} = 2.997925 \times 10^{8} \text{ m}$
 $(\cong 3 \times 10^{8} \text{ m/s})$
In free space the wavelength is:
 $\lambda = \frac{c}{f}$
For a nonmagnetic dielectric:
 $\lambda_{d} = \frac{c}{f\sqrt{\epsilon_{r}}} = \frac{\lambda_{o}}{\sqrt{\epsilon_{r}}}$
where: ϵ_{r} is relative dielectric from Table 1.1

Myth #2 - Wi-Fi is Scalable

- It works at home...
- Setting up Wi-Fi at home is easy and simple... so why so difficult to scale up to provide same service at school?

Scale requires different level of engineering

Myth #3 - Wi-Fi is like Ethernet

- Ethernet Uses CSMA/CD Collision Detection
- Ethernet NICs can talk and listen simultaneously
- Collisions happen during Preamble
- If collision, then random back-off
- Then Retransmit

#3 - Reality

- 802.11 uses CSMA/CA
- NICs cannot talk and listen
- No Collision Detection
- Random back-off BEFORE EVERY Tx
- If collision, don't know until after entire payload Tx (lack of ACK)
- Contention/Collisions with all others on same frequency (above CCA thresholds)

Myth #4 - Wi-Fi is like Cellular

- Cellular the tower controls client connections and power settings
- Cellular uses technologies to share limited frequencies
- Cellular uses Licensed Frequencies (\$\$)
- Cellular frequencies have pretty good penetration and distance

#4 - Reality

- Wi-Fi and 802.11 Protocols have the Client choose the Access Point to join
- Clients choose their Tx power
- Limited frequencies (only 3 in 2.4GHz)
- Shared Collision/Contention domains
- Frequencies limited in penetration and distance
- Frequencies are Unlicensed

Myth #5 - More Access Points = More Capacity

- If you need more capacity add more Access Points
- If you need more coverage add more Access Points
- Access Points are like Switch Ports... Right?

#5 - Reality

- All client devices and all Access Points on the same frequency SHARE the limited resource of frequency together
- Adding more AP's in the same frequency that can see each other actually lowers capacity

Myth #6 - WLANs must support Legacy Devices

- "But we have all these older 802.11b clients we need to support."
- "We *have to* support all the 2.4GHz only devices."
- "Don't you understand... that is the scanners we have - make it work."

#6 - Reality

- 802.11 protocols ARE backwards compatible supporting legacy devices is possible
- Huge cost in throughput and efficiency in order to do so
- Allowing slow devices on WLAN is very expensive and hugely inefficient
- You would NEVER do this with wired infrastructure
- Think about the "Sunk Cost Fallacy"

Myth #7 - All Access Points are basically the Same

- "Why spend hundreds of dollars on an Access Point - I picked up my home WAP Router at Best Buy for under \$100"
- "Save money on the Access Points by going with the cheaper version"

#7 - Reality

- Extreme differences between various vendor solutions
- Cost of Goods Sold Example
- Requirements for Home, Small Office and high-density schools very different
- Match solutions to meet your requirements
- Don't "Drag Race School Busses"

How does newer cable support higher speeds?

How to Properly Engineer WLANs

- Define specific and detailed requirements
- Design engineer to meet requirements within constraints using complex math & advanced tools
- Deploy Test Wired Network, Install AP's and Configure Management
- Validate Verify WLAN meets all requirements
- Note: Just like CatX cable, it's all about meeting specs!

Define

- Don't succumb to enticing simplicity of mere ratios NON-Engineered Solution
- Spend time and energy to gather detailed and specific requirements correctly
- Think and plan for future
- Don't forget the constraints
- Entire WLAN success hinges on this step!

Know Your Devices

- Device Types
- Device Capabilities
- App Needs
- Active vs Passive
- Associated vs High Data Usage

Define Realistic Requirements

- "All students to use Wi-Fi simultaneously"
- "We need Wi-Fi coverage everywhere"
- Compare with Cafeterias, Recess, Teacher Breaks, AM/PM Students, etc.

Design

- **Iterative** process of meeting requirements while staying within defined constraints
- Sometimes can't get there from here
- Based on RF fundamentals and 802.11 Protocols
- Use explicit and complex math with professional software and tools
- Calculate base assumptions on device types, counts and app traffic flows
- Achieving Frequency Reuse is paramount and trumps all else
- Use on-site measurements to increase predictive accuracy

Constraints

- Budget
- RF Characteristics of buildings & walls
- 802.11 Protocol Issues
- Aesthetics
- Cabling Accessibility & Distances
- Every requirement and constraint has a trade-off!

Deploy

- Easiest of all steps
- Test wired side of network BEFORE installing each and every Access Point
- Lots of moving parts in addition to RF and 802.11 pieces

Validate

- Most Important Step
- Don't test Cat6 cable on the spool... only after installed
- How else can you know if invisible RF will meet your design requirements?
- This MUST be included in every WLAN installation
- Make sure to include in your bids and RFPs

• Adjust when necessary

IT Professional Wi-Fi Trek 2015 #wifitrek

Final Myth

- K-12 merely needs One Access Point per Classroom
- Don't be fooled by this sales technique
- It is NOT engineering merely an easy way to sell
- Simple ratios are NOT a way to engineer a correct WLAN infrastructure that meets your requirements AND saves schools funds

Final - Reality

- K-12 needs a properly ENGINEERED Wireless LAN that meets all design requirements within defined constraints
- No more... No less...
- Just because it 'works' does NOT make it the proper solution!
- Make sure your vendor/VAR will spend the time and effort necessary to:

Define, Design, Deploy and especially Validate your WLAN solution

Conclusions

Create best possible solution to your schools Wi-Fi needs by:

- Spend time to define specific requirements
- Use math, software and tools to design to meet all requirements
- Validate to confirm/verify WLAN meets requirements
- Most efficient use of funds is to engineer a proper solution

Recommendations

- Coverage is Easy Getting rid of CCI is difficult
- Stop purchasing any 2.4GHz only devices Focus on 5GHz deployments
- Costs per AP include installation, cabling, PoE switch port, licensing & more
- Shorthand provide minimum 4-radio coverage

(2-3 in 2.4GHz and 2 in 5GHz at -67dBm or better)

• Plan and budget for faster refreshes of WLAN infrastructure

Questions

Resources

http://WLANPros.com

http://revolutionwifi.net

Twitter

WLAN Blogs

CWNP Program & Training

Vendor Websites & Conferences

